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Generalized Analysis for a Class of Linear
Interferometric Networks—Part II:

Simulations
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Abstract—In Part I of this paper, the author presented a
method to simplify the analysis and design of interferometric mi-
crowave and optoelectronic networks such as filters, sensors, ring
resonators, etc., comprised of 2� 2 couplers, waveguides, reflec-
tors, and mismatched interfaces. The simplification was achieved
by introducing a generalized single-mode lumped-element 2� 2
coupler with arbitrary coupling paths. In Part II, the author nu-
merically examines a number of interferometric devices utilizing
the analysis described in Part I. These devices include feedback-
assisted couplers, multiple-ring resonators, unit transmittance
circuits, add/drop filters, grating-assisted Mach–Zehnder (M–Z)
interferometers, etc. Results are presented on the characteristics
of the output and circulating wave in the resonant rings as
a function of frequency, coupling coefficient, loss, and other
component parameters. Results on group-delay characteristics
are also given.

Index Terms—Filter circuits, interferometric networks, sensors.

I. INTRODUCTION

I N PART I of this paper [1], a method was presented
to analyze and evaluate a wide variety of interferometric

circuits based on 2 2 couplers. Central to this method was
the introduction of a new generalized lumped-element 22
coupler. The topological flexibility offered by this generalized
coupler made it possible to treat any interferometric circuit
based on 2 2 couplers as a cascaded set of four-ports
and, consequently, to apply cascade circuit analysis to a wide
variety of network topologies. Part I of this paper analyzed
cascaded circuits with internal (reflective elements terminating
some or all external ports) and combined internal and external
(transmission circuit(s) connecting external ports) feedback,
including resonant configurations. It provided unified expres-
sions for the scattering matrix of the feedback-assisted device,
for the circulating amplitude in the feedback line, and for
the characterization of resonant circuits. Finally, Part I also
listed the scattering transfer matrices () of the six types of
generalized lumped-element 22 couplers and the symmetry
operations that relate the scattering matrices () of these
couplers to each other.

In Part II, we describe, through numerical experiments, the
performance of selected devices, demonstrating the salient fea-
tures of the analysis and its ease of use. In Section II, cascaded
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Fig. 1. M–Z interferometer with an F–P resonator built into one of the
transmissions lines connecting the couplers.

circuits without feedback are examined. Here, we compare the
performance of circuits built with lumped-element and dis-
tributed parameter couplers, connected to each other through
transmission lines and/or gratings (or Fabry–Perot (F–P) res-
onators). Section III deals with feedback-assisted circuits, in-
cluding channel dropping and combining filters (add/drop
filters). Transmitted intensity, circulating current, time delay,
and finesse will be characterized. Special attention is paid to
so-called unit-transmittance networks [2]. In Section IV, we
focus on resonator circuits and on the effect of loss on res-
onance characteristics. Section V summarizes the advantages
of the method of calculation and the results obtained.

II. CASCADED CIRCUITS

The four-port network obtained by connecting the ba-
sic building blocks, namely couplers, transmission lines
(waveguides, optical fibers, etc.), gratings, F–P resonators,
and interface (splice) discontinuities, is called the cascaded
network. Fig. 1 shows an example of such a network
consisting of two lumped-element or distributed parameter
forward (Type 1) couplers connected by a uniform waveguide
and another guide with a built-in F–P resonator. The figure
also indicates the port designation used in this paper. The
network illustrated in Fig. 1 is a modified Mach–Zehnder
(M–Z) interferometer, adapted to sense small changes in the
phase shift in one of the arms (pigtails) of the resonator.
The performance of this sensor, using fused couplers, was
simulated in the infrared, near 10m. The power-coupling
coefficients of the lossless couplers were , the
length of the uniform waveguide was 20 mm, and the pigtails
connecting the resonator to the couplers were
mm long. Each half of the resonator is made up of 40 unit cells
separated by a 3.38-m-long cavity. Each unit cell consists
of two 1.62- m-long sections, their refractive indexes being
1.5 and 1.6, respectively. The effective refractive index of the
uniform line sections, including that of the cavity, was chosen
to be .

0018–9480/98$10.00 1998 IEEE



1410 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

Fig. 2. Output intensity characteristics at the four ports of the M–Z inter-
ferometer, normalized with respect to the input intensity at port 1. The solid
(dotted) curves correspond tol2 = 10 mm (l2 = 10 mm + 3.38�m) at a
free space wavelength of� = 1:5 �m.

Fig. 2 shows the output intensities at the four ports of the
device, normalized to the input intensity at port 1 as a function
of free-space wavelength (– ). The solid (dashed) curve
corresponds to mm (10 mm 3.38 m). The slight
change in , corresponding to approximately 180phase shift,
causes the output at port 3 to drop by more than 40 dB and
the output at port 4 to increase from an imperceptibly low
level to full input level. Calculation shows that, as expected,
as the phase shift in the arm varies from 0 to 360 , the
drop in level at port 3 varies from zero to a maximum of
over 40 dB at 180, and back to zero. The effect of the F–P
resonator is the marked reduction of the bandwidth over which
this transition occurs. The width of the central spike in Fig. 2 is
approximately 1 nm, corresponding to a bandwidth of 2 GHz.
By adjusting the length of the F–P cavity, the location of the
spike can be shifted. The out-of-band behavior of this sensor
can also be seen in Fig. 2, where we notice that a phase shift of
180 inverts the outputs of ports 3 and 4. When the phase shift
is a multiple of , the two curves are identical. The reflected
intensities observed at ports 1 and 2 are not affected by the
phase change in the arm. From the reflection coefficient of
the F–P resonator, computed at the center of its resonance,
the coupling coefficient in the Bragg gratings is estimated to
be 0.02 m . At center wavelength (10.04m), only the
dotted output at port 3 (corresponding to 180phase shift)
is sensitive to variations in the coupling coefficient. As
the common coupling coefficient is varied from 0.4 to 0.5,
the dotted output drops from 13 dB to below 40 dB and
subsequently rises again to13 dB as is further increased
to 0.6.

Characteristics indistinguishable from those shown in Fig. 2
are obtained in the stopband region, when distributed param-
eter rather than lumped-element couplers are used. Care must
be taken to select their length appropriate for an equal power

Fig. 3. Output intensities versus inverse wavelength of a M–Z interferom-
eter incorporating a superstructure. The solid (dotted) line corresponds to
l2 = 10 mm (l2 = 10 mm + 2.50 �m).

split. We have chosen a ratio of 30 and a length of

m (1)

to obtain the same output intensities as those shown in Fig. 2.
We simulated a lossless device similar to that shown in

Fig. 1, replacing the F–P resonator by a so-called superstruc-
ture consisting of a series of five gratings with 60, 138, 157,
138, and 60 unit cells. The period length was m, the
gap separating the gratings was also 0.5m, and the high
and low refractive indexes were chosen to be
and , respectively. The bandwidth of this composite
grating is approximately 1.45 nm, centered at 1.5m. Note
that throughout this paper, we shall use normalized frequency
(inverse wavelength) units , where ,
the velocity of light in vacuum is given in millimeters per
second so that the length dimensions in our computer program
are interpreted to be in millimeters. In doing so, the product
of the normalized frequency and nominal length provide the
ratio of the physical length to the free-space wavelength.
Fig. 3 shows the output intensities versus inverse wavelength
at ports 3 and 4. The solid curve applies to the circuit when

mm, the dotted curve reflects a change in
by 2.5 m. The wavelength separation is 1.35 nm. Reflected
intensities were both down by more than 36 dB.

The channel combining/dropping (add/drop) filter is another
example of a cascaded interferometric circuit. In its simplest
form, it consists of two forward (Type 1) couplers separated by
identical Bragg gratings (band-stop filters) in the connecting
waveguides. Assuming port 1 to be the input port, the distance
between the output ports of the first coupler and gratings must
be such as to cause a constructive (destructive) interference for
the reflected signals traveling back toward port 2 (port 1). If
the couplers are 3-dB hybrids, this condition is fulfilled when
the phase-delay difference between the output ports of the first
coupler and gratings is , where is an integer. Similarly,
the distances between the output ports of the gratings and the
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Fig. 4. Out-of-band outputs of a channel combining/dropping filter as a
function of the waveguide length connecting the output of a grating with
the input of a second coupler. The length of a grating period is 0.5�m.

input ports of the second coupler can be selected to cause the
transmitted signal to exit through either ports 3 or 4 of the
device.

Fig. 4 illustrates the effect of path-length () variation
between one of the gratings and the second coupler, while
keeping the corresponding path length () behind the other
grating fixed at 5 m. Here, the applied frequency is in the
passband of the gratings ( m, ). As
increases from 4.5 to 5m, the output is gradually transferred
from ports 3 to 4; when is 4.75 m, the power is split
equally between the two output ports.

Another type of channel dropping/combining filter, devel-
oped for millimeter-wave use by Ohtomo (Ootomo)et al.
[3] and for optical frequency division multiplexing (FDM)
communication systems by Odaet al. [4], consists of two or
more ring resonators coupled to each other and to external
waveguides. A double-ring resonator version and its equivalent
circuit are shown in Fig. 5(a) and (b), respectively. For an
input signal at port 1, there is output at ports 2 and 4 only.
Output at port 4 occurs only in the narrow bands of resonance
of the coupled rings. For resonance to occur,

(2)

must be satisfied, where is an integer. The free spectral
range (FSR) of the th ring is FSR . In the
symmetric design , and the rings are identical. In
the so-called vernier configuration, is the ratio of two
consecutive integers 2. Since resonance requires that (2)
be satisfied for all rings, the FSR of the combined device
becomes the smallest common denominator of all . For
example, if and , then the coupled
resonator will have an FSR 120. As the full width at
half maximum (FWHM) is not affected by this operation, the
vernier configuration offers a practical tool to increase the
finesse of the filter.

(a)

(b)

Fig. 5. Double-ring-resonator channel combining/dropping (a) filter. (b) Its
equilvalent circuit. Modeled using concatenated Type-5 couplers.

The level of coupling between the resonant rings determines
whether the resonators are undercoupled, critically coupled,
or overcoupled. Odaet al. [4] determined the critical power-
coupling coefficient for a symmetric device to be

(3)

For the filter is overcoupled and its resonance
curve acquires two peaks. For a symmetric double-ring filter,
we found the split between the peaks to be well approximated
by

(4)

The device is very sensitive to coupler loss, but it tolerates
waveguide loss up to 1 dB/cm without significant deterioration
of the amplitude characteristics.

The performance of multiple-ring add/drop filters is of-
ten enhanced by mirror or grating-assisted feedback. These
configurations will be discussed in greater detail in Section III.

III. FEEDBACK-ASSISTEDINTERFEROMETRICCIRCUITS

A simple feedback-assisted interferometer [5] and its equiv-
alent are shown in Fig. 6. Use of a Type-3 coupler facilitates
“straightening out” the convoluted configuration into what has
been classified in Part I as a Case-4 feedback-assisted cascaded
network. The device includes one resonant ring consisting of
the and waveguides. The presence of a resonant ring
results in a comb-like frequency characteristic with an FSR
determined by the effective length of the ring .
Resonance occurs when the round-trip phase is an integral
multiple of , i.e., when

(5)

where is the number of coupled connections in the path,
each inserting a 90phase shift, and is an integer.

The characteristics of the normalized transmitted () and
reflected ( ) intensities as a function of the normalized
frequency are shown in Fig. 7. The circuit components are
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(a)

(b)

Fig. 6. A feedback-assisted two-coupler interferometer. (a) The fiber-optic
device. (b) The equivalent circuit.

Fig. 7. Normalized reflected and transmitted intensities versus inverse wave-
length (f=c) of the device shown in Fig. 6. The parameter is the common
power-coupling coefficientK. Solid curve:K = 0:1, dotted curve:K = 0:2,
and dashed-dotted curve:K = 0:3. The other parameters of the device are
given in the text.

lossless, the refractive index of the guides is , ,
and m. For these values, the two resonances
shown correspond to and , respectively, and the
FSR evaluates to Hz, or 45.45 units on
the inverse wavelength scale. The resonant wavelengths of
this device are insensitive to variations in. The parameter
in Fig. 7 is the common power-coupling coefficient of the
couplers , which has been varied from 0.1
to 0.3 (10–5.3 dB). As increases, so does the width of the
passband . For , this passband is approximately
0.649 units ( 1.95 10 Hz) wide at the 3-dB level. The
finesse of the interferometer with is

(6)

With , the finesse obtained is 150.

Fig. 8. Normalized reflected and transmitted intensities versus inverse wave-
length (f=c) of the device shown in Fig. 6. For the solid (dotted) line
K2 = 0:01 (0.057). In both cases,K1 = 0:01.

Fig. 9. Normalized output intensity of the device shown in Fig. 6, as a
function of the inverse wavelength andK2. The value ofK1 was kept
constant at 0.05.

Another feature of this circuit is illustrated in Fig. 8, where
the frequency characteristics of the reflected and transmitted
intensities are plotted for (solid line) and 0.057
(dotted line), while . A narrow and extremely
pronounced ( 40 dB) discrimination occurs at the resonance
frequency as a result of a small change in. This feature can
be exploited to sense the presence or absence of a mesurand
that affects the coupling coefficient of a weak coupler. The
surface plot of Fig. 9 illustrates the variation of the output as
a function of inverse wavelength and . Notice the sharp dips
in the output intensity distributed over an elliptical path on the

versus normalized frequency plane. In this simulation,
was set to 0.05 (13 dB) and losses were neglected.

The circulating wave intensity in the feedback line can be
computed using the expressions given in [1, Appendix C].
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(a)

(b)

Fig. 10. (a) Feedback-assisted ring resonator. (b) Its equivalent network.

Calculations show that, at resonance, this circulating wave
intensity can rise more than 30 dB over the level maintained
between resonances.

A feedback-assisted ring resonator and its equivalent net-
work, incorporating two Type-5 couplers in a Case-4 config-
uration, are shown in Fig. 10. Here, we note that when the
generalized coupler described in Part I is applied to model
a device, the equivalent circuit may not be unique. This
multiplicity of equivalent circuits for the same device is in the
nature of modeling. Since true equivalents produce identical
numerical results, it is immaterial which model is adopted. For
example, replacing both couplers with Type 1 in Fig. 10(b),
and appropriately renaming the connecting waveguides, or
replacing the second coupler with Type 4 and changing the
feedback configuration to Case 5, result in other equivalent
circuits of the device depicted in Fig. 10(a).

The ring resonator shown in Fig. 10 is a unit-transmittance
interferometer, which means that under ideal conditions, i.e.,
when the components are lossless and the splices are perfect,
all input power will exit at the output port. Consequently, the
output frequency characteristics of an ideal unit-transmittance
device is flat. However, large wave-intensity variations are
observed in the feedback line () when the input frequency is
commensurate with the resonant frequency of the ring [6].
This can be seen in Fig. 11, illustrating the forward wave
intensity ( ) in the feedback guide (there is no power flow in
the reverse direction) as a function of inverse wavelength. In
this simulation, the ring consisted of two coupling
coefficient couplers, equal half-rings m, and a
feedback guide m-long (12.5 m) represented by the
solid (dotted) line. With , the first resonance at ,
calculated from (2), occurs at . Notice that there is
no coupling into the ring for a normalized frequency of 250
(200) or ( ). This is due to the incommensurate
traveling times in the half-ring and feedback line. Whenever

(7)

and is of different parity from , interaction be-
tween ring and feedback guide is eliminated as a result of
a 180 propagation phase cancellation. In Fig. 11, the above
equality holds true for and ( and

Fig. 11. Characteristics of the forward wave intensity in the feedback guide
of the ring resonator illustrated in Fig. 10. Resonances occur when the phase
delays in pathsl2 andl3 are commensurate. The common coupling coefficient
is K + 0:95 and the length of the feedback guide is 12�m (solid line) or
12.5�m (dotted line). Other parameters are listed in the text.

), for and ( and
), etc., but it does not hold, for example, for

and .
As expected, the factors associated with the resonances

seen in Fig. 11 increase as approaches 0.5, and are
significantly reduced by coupler loss; however, they are re-
markably insensitive to waveguide loss. A coupler attached to
the feedback guide can sample resonant intensity fluctuations.
Further examples of unit transmittance interferometric circuits
are shown, e.g., in [7, Figs. 2 and 3].

We simulated several other feedback-assisted cascaded in-
terferometers consisting of two 2 2 couplers. Those con-
figurations that include one or more ring resonators exhibit
comb-filter-type characteristics. The circulating wave intensity
in the feedback line and the transfer characteristics of these
interferometers are fairly complex, not only because (5) has
as many sets of solutions as the number of resonant rings in
the circuit, but also because the resonance frequencies of the
rings shift as a result of coupling.

Here, we report on a circuit that exhibits useful circulating
wave-intensity characteristics. A bulk-optic realization of the
interferometer, comprised of four mirrors and two beam-
splitters is shown in Fig. 12(a) [8], while the equivalent circuit
appears in Fig. 12(b). This interferometer has one resonant
ring that passes through, , and the two couplers, acquiring

phase shift in the process. All circuit components are
assumed to be lossless. Fig. 13 illustrates a simulation of the
output intensity as a function of the inverse wavelength and the
common power-coupling coefficient . For this
figure, we have chosen m, m, m
and . The FSR is, therefore,
units. A resonance occurs at , which satisfies
(5) with . Fig. 13 indicates a resonance bandwidth
that gradually decreases in width asapproaches unity. The
circulating wave intensity, normalized to the input intensity,
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(a)

(b)

Fig. 12. (a) Resonant ring interferometer of another configuration. (b) Its
equivalent circuit. BS: beam splitter, M: mirror. The resonant ring consists of
pathsl1; l2 and the two coupled connections in the couplers, each contributing
90� phase shift to the total phase delay.

Fig. 13. Output intensity of the ring interferometer of Fig. 12 as a function
of inverse wavelength and the common power-coupling coefficient.

propagating in the feedback line is shown in Fig. 14.
is the wave intensity propagating from ports 3 to 2 andis
the wave intensity propagating in the opposite direction. The
parameter is the common refractive index of the waveguides.
For the solid curve, , for the dotted curve,

, and for the dashed–dotted curve, . The
common power-coupling coefficient is . The shift in
the resonance frequency is in accordance with (5), i.e.,

(8)

Notice the narrow deep minima in the otherwise flat
characteristics, centered on the resonance frequency. The re-
sult indicates that in this configuration 0.1% change in the
refractive index causes an approximately 1.54-nm-wavelength
shift at m. A directional coupler connected to
the feedback line, sampling the current in the appropriate
direction, should prove to be a sensitive tool to measure small
variations in .

Application of the generalized scattering parameter algo-
rithm described in Part I quickly reveals that circuits of seem-

Fig. 14. Spectral characteristics of the circulating wave intensities in the
feedback pathl3 of Fig. 12 propagating from ports 3 to 2 (C1) and from
ports 2 to 3 (C2). The parameter is the common effective refractive index
of the waveguides. Solid line:ne = 1:5, dotted line:ne = 1:50075, and
dashed–dotted line:ne = 1:5015. The common power-coupling coefficient
is 0.99.

(a)

(b)

Fig. 15. Two resonant ring interferometers that exhibit similar input/output
characteristics as the circuit shown in Fig. 12. Only Fig. 15(b) displays the
sharply resonant circulating current characteristics of Fig. 14. Neither circuit
is of unit transmittance.

ingly quite different topology can have identical input/output
characteristics. For example, the double-ring interferometer
shown in Fig. 15(a) with , and the ring
resonator shown in Fig. 15(b) [9], a modified version of the
ring resonator seen in Fig. 10 with , have
the same input/output characteristics as the circuit shown in
Fig. 12. However, only Fig. 15(b) exhibits the narrow-band
circulating current characteristics seen in Fig. 14.

We simulated switching discrimination in excess of 40 dB at
discrete equally spaced frequencies on a lossless interferometer
of two cascaded couplers in a Case-6 configuration. The first
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Fig. 16. Reflected and transmitted intensity characteristics of a cascaded net-
work in Case-6 configuration described in the text. Notice the more than 40-dB
switching discrimination at discrete frequencies when the power-coupling
coefficient of the second coupler is changed from 0.04 (solid curve) to 0.96
(dotted curve). The coupling coefficient of the first coupler isK1 = 0:44.

coupler was Type 3, the second Type 1. The reflected and
transmitted intensities are shown in Fig. 16. For the solid
curve, , for the dotted curve, , and

in both cases. No appreciable deterioration of
this performance was observed until waveguide losses reached
10 dB/cm or coupler losses reached
( ). Note that for integrated circuits in Si, the actual
waveguide loss is approximately 0.1 dB/cm, while in fiber
waveguides a much smaller loss coefficient can be realized.

The group delay for this circuit, computed using (27) of
Part I, appears in Fig. 17. Here, we note that for a lossless
reciprocal two-port, the phase angles of , , and are
related through

(9)

If the circuit is bilaterally symmetric, and, as a
result, all three group-delay characteristics are the same. For
asymmetric circuits, we observed a difference betweenand

, but it was so small, that the relative difference it caused
between and was in the order of 10 and could not
be registered.

An interferometer consisting of a cascade of a Type-4 (or
Type-5) and Type-1 coupler in Case-6 configuration can be
used to obtain extremely narrow-band rejection at the output
port. This circuit includes two resonant rings, both passing
through the guides connecting the couplers (and ) and
the feedback line (), but one of the paths acquires an extra
180 phase shift by passing through the second coupler twice.
As a result, the output frequency characteristics consists of
two interspersed comb distributions whose separation depends
on the coupling coefficient of the Type-1 coupler. In our
simulation, both couplers had a power-coupling coefficient of
0.05 (13 dB). We found the 3-dB relative bandwidth to be
2.3 10 , which reduces to 4.6 10 when the coupling
coefficient drops to 0.01 (20 dB). The length of the feedback

Fig. 17. Group-delay characteristic of the reflected signal of the interfero-
metric network to which Fig. 16 applies.K2 = 0:04 (solid line),K2 = 0:96

(dotted line), andK1 = 0:44.

(a)

(b)

Fig. 18. (a) Switching comb-filter configuration. (b) Its network equilvalent,
consisting of two cascaded couplers and Bragg grating terminations at ports
3 and 4.

guide can control the center wavelength of the spike. We
investigated the effect of losses on this filter and found that
waveguide loss up to 0.1 dB/cm had insignificant influence on
its performance; however the device was extremely sensitive
to coupler loss. Specifically, we observed that , or

was the maximum value tolerable for a useful
device (20-dB rejection).

A switching comb filter operating over the stopband of a
grating has been simulated using the configuration shown in
Fig. 18. The circuit is made from two lengths of coupled opti-
cal fibers, each equipped with a Bragg grating at one end [see
Fig. 18(a)]. The equivalent circuit consists of two cascaded
Type-3 couplers in Case-3 configuration [see Fig. 18(b)]. Two
resonant rings characterize the performance of this network.
For the first, and it passes through two
coupled links, while the second passes through one coupled
link with , where is the
penetration depth of the signal into the grating at the frequency
where the resonance occurs. The distanceis associated with
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Fig. 19. Reflected and transmitted intensity characteristics of the comb-filter
device shown in Fig. 18. The common coupling coefficient is 0.5. A�=2 phase
shift in l3 or l4 moves the solid curve into the dotted one. Other pertinent
parameters are given in the text. Higher resolution sampling reveals that the
transmission minima reach below�40 dB.

the reflection time delay , thus,

(10)

where is the phase of the reflection coefficient () and
is the phase velocity in the grating.

The gratings were selected to be identical: periodicity
m, high/low refractive indexes of 1.51/1.49 and

unit cells. Fig. 19 shows the reflected () and transmitted
( ) intensity characteristics for ,

m, and m (solid line). Using the
parameters given above, we obtain a frequency separation of
33.33 units for the first set of resonances, and approximately
1.3 units for the second set (the calculated penetration depth
at stopband center is m). None of the first set of
resonances falls within the stopband of the gratings, which is
centered on . Fig. 19 indicates that the second set of
resonances determine the characteristics of the filter. A
phase shift in or moves the solid-line characteristics
into the dotted one, effectively providing more than 20-dB
discrimination. At the given wavelength ( m) and
effective refractive index ( ), such a phase shift is
produced by , or a displacement of
0.25 m.

Spectral characteristics very similar to those seen in Fig. 19
have also been obtained using distributed rather than lumped-
element couplers having 13.98-m length and a ratio of
1.252.

As a final application of the generalized analysis to
feedback-assisted cascaded coupler circuits, an add/drop filter,
shown in Fig. 20(a), is described. The equivalent circuit is seen
in Fig. 20(b). The gratings sharpen the resonance provided by
the ring and offer two orders of magnitude higher selectivity
than that which can be obtained by simply terminating ports
3 and 4 with wavelength independent reflectors (mirrors). For
our simulation, an effective guide index of 1.5 was used, the

(a)

(b)

Fig. 20. (a) A Bragg-grating assisted ring resonator add/drop filter. (b) Its
network equivalent, consisting of Type-5 couplers.

Fig. 21. Reflected and transmitted intensity characteristics of the add/drop
filter shown in Fig. 20. Solid line:K1 = 0:5, dotted line:K1 = 0:032,
dashed–dotted line:K1 = 0:032, and mirrors replace the gratings. In all
three cases,K2 = 0:01. Additional parameters are specified in the text.

length of the ring was m, the waveguides connecting
the gratings to the second coupler were m
long, and the gratings had unit cells with

m periodicity and high/low refractive indexes of
1.51/1.49. The free-space wavelength at resonance for this
device is m. Fig. 21 shows three reflection ()
and transmission () intensity characteristics. The solid line
is obtained when , the dotted line corresponds
to , and the dashed–dot line applies to a filter
with mirrors replacing the gratings and . In all
three cases, . Both couplers and waveguides were
assumed loss free.

Fig. 21 indicates the versatility of this filter configuration
when the grating stopband is tuned to the resonance of the ring.
A further fivefold reduction of the 3-dB bandwidth of the
characteristics can be obtained by lengthening (or shortening)

by 10%, causing less than 5 10 relative shift in the
resonance frequency. It is also possible to move the resonant
dip over the stopband of the grating by varying the length of
or . This is illustrated in Fig. 22, where is changed from 3

m (dotted line) to 5 m (solid line) to 7 m (dashed–dotted
line). The device is relatively insensitive to waveguide loss,
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Fig. 22. Characteristics of the add/drop filter of Fig. 20 with changing guide
length l4. Dotted line:l4 = 3 �m, solid line:l4 = 5 �m, and dashed-dotted
line: l4 = 7 �m. Higher resolution sampling reveals that the transmission
minima reach below�40 dB.

but very sensitive to coupler loss. As an add/drop filter, this
ring resonator would be used in conjunction with a circulator.

IV. RESONATOR CIRCUITS

Interferometric resonator circuits constructed from a chain
of 2 2 couplers have all four ports of the cascaded network
either terminated by mirrors or gratings and/or connected by
feedback circuits. Resonance occurs when

(11)

where is the scattering matrix of the cascaded network,is
the scattering matrix of the embedding network defined in Part
I, and is the 4 4 identity matrix. Unless the resonator is
lossless, (11) cannot be satisfied. Instead, we seek a minimum
of the absolute value of the left-hand side.

Seven resonator configurations, called “Options,” were de-
fined in Part I. In Option 1, all four ports are individually
terminated by reflective elements, numbered from 1 to 4. In
Options 2–4, there are two reflectors named after the port they
terminate and one feedback line. In Options 5–7, there are
two feedback lines connecting the four ports. The line attached
to port 1 is designated as , the other is designated as .

Interferometric resonator networks usually are comprised of
more than one resonant ring. Were they uncoupled, each ring
would resonate at a series of resonant frequencies determined
by (5). Coupling between two identical resonators or between
resonators whose resonant frequencies are close to each other
causes their resonant frequencies to push apart [10], as dis-
cussed in connection with (4). The stronger the coupling, the
greater the separation between the resonant frequencies. This
general rule undergoes some modification in resonator circuits
where several sets of resonances are likely to interfere with
each other.

To simplify the problem, we investigated two types of
resonators consisting of identical couplers: cascaded couplers
terminated at all four ports by identical gratings (Option

(a)

(b)

Fig. 23. The two types of symmetrical resonator circuits investigated. (a)
Option-1 configuration with all four ports terminated by identical gratings.
(b) Option-5 configuration where the feedback lines connect the output of the
cascaded network with its input, creating an endless loop.

1) and symmetric resonant rings (Option 5). Fig. 23 shows
examples of these circuits. Fig. 23(a) illustrates a resonator
in Option-1 configuration consisting of two identical Type-
1 couplers; and represent the entire distance between
the gratings facing each other. Fig. 23(b) shows four cascaded
Type-1 couplers in Option-5 configuration where the feedback
lines connect the output of the cascaded circuit with its input,
creating an endless loop. and represent the entire length
of the rings. The number of cascaded couplersand the type
of coupler used are arbitrary in either configuration.

To demonstrate the salient features of the type of resonators
shown in Fig. 23(a), we have chosen a network consisting
of two Type-1 couplers connected by waveguides with an
effective refractive index of 1.5, total lengths of m
and m, and terminated by gratings defined
by m, , and . The
couplers were positioned so that the lengthsand were
divided into equal sections and the length increment of the
second guide was varied from 0 to 1.5m. Visual inspection
reveals that this circuit incorporates four resonant loops with
the following round-trip lengths: , ,

, and . When the coupling
is negligible, only two resonances corresponding to the first
two round trips occur. With m and , these
will overlap and provide a set of resonances in the grating
stopband separated by FSR1.7825 units on the inverse
scale. Since 180phase shift in this circuit is obtained for a
change of 0.5 m in round-trip length, setting m
will result in a second set of resonances bisecting the first.
With increased coupling, the third and fourth set of resonances
will also appear, their location being determined byand
by the strength of the coupling. Fig. 24 was obtained for

and (solid line), m
(dotted line), and m (dashed–dotted line). Note
that the dips reaching down to only about4 dB is merely
an indication that the number of sampling points used in the
computer program were insufficient to adequately resolve the
sharp resonances.
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Fig. 24. Set of resonances occurring in the stopband of the gratings for
the device shown in Fig. 23(a).L1 = 150 �m, L2 = (150 + �) �m,
K1 = K2 = 0:5. Solid line: � = 0, dotted line:� = 0:75 �m, and
dashed–dotted line:� = 1:5 �m. Higher sampling rates are required to better
resolve the sharp resonances.

Fig. 25. Resonance characteristics of the device shown in Fig. 23(b) with
four couplers. The common power-coupling coefficient is 0.1,L1 = 100 �m,
L2 = 83:333 �m. Solid line: forward (Type 1) couplers, dotted line: reverse
(Type 3) couplers.

For the configuration shown in Fig. 23(b), we have chosen
and ring lengths of m and

m. With these parameters, the uncoupled resonances
occur at multiples of ten and 12 inverse wavelength units,
respectively. When , changing forward couplers
(Type 1) into reverse couplers (Type 3) causes no change in
the performance because the circulating paths remain the same.
This is no longer the case when . For the results shown
in Fig. 25, and a common power-coupling coefficient
of 10 dB was chosen. The solid line applies to Type-1 couplers,
the dotted line to Type-3 couplers. There is a coincidence of
resonance frequencies at even multiples of the coupling-shifted

fundamental resonances while odd multiples of the reverse
coupler resonances remain practically unaffected by coupling.

We have chosen simple configurations to illustrate the
salient features of resonant interferometric circuits. Of the type
of losses that affect the resonant behavior, coupler loss is the
most critical. We found that setting ( )
will significantly flatten the resonance dip. An equivalent effect
is observed only when waveguide losses reach a level of
3.5 dB/cm.

V. CONCLUSIONS

In this paper we demonstrated, that the generalized analysis
of interferometric networks based on 2 2 couplers is
a powerful tool in the investigation of their performance
characteristics. We also demonstrated the wide coverage of
network topologies to which this analysis can be applied. All
of the results were obtained using a single relatively simple
(few 100 lines) MATLAB program that takes less than 1 min
to run on a modern PC.

Simulations on a set of more complex configurations, fabri-
cated with 2 2 couplers, have also been concluded and shall
be reported in a forthcoming publication. One of these config-
urations are grating-assisted lattice networks, both uniformly
and nonuniformly distributed, such as cascaded feedback-
assisted interferometers, cascaded four-port couplers, and cas-
caded M–Z interferometers. The other type of network config-
uration treated can be characterized as a spectral filter; such as
an M–Z interferometer with a feedback-assisted four-port in
one its arms or a cascaded network where one of the four-port
subassemblies is rotated by 90.
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